Skin Cancer Detection Mobile App

Software Design Document

Version 1.0
Nikiraj Konwar, Lawson Darrow,

Nicolas Rincon-Sperenza, Christian Stevens

Faculty Advisor: Dr. Nematzadeh

Table of Contents

1.0 INTRODUCTION
1.1 Purpose
1.2 Background and Objectives
1.3 Definitions and Acronyms

2.0 SYSTEM OVERVIEW
2.1 Image Capture Module
2.2 Machine Learning Inference Engine
2.3 Results Processing and Display
2.4 Data Management System

3.0 SYSTEM ARCHITECTURE
3.1 Architectural Design
3.2 Decomposition Description

4.0 DATA DESIGN
4.1 Data Description
4.2 Data Dictionary

5.0 COMPONENT DESIGN
5.1 Presentation Layer Components
5.2 Application Logic Layer Components
5.3 Machine Learning Layer Components
5.4 Hardware Abstraction Layer Components

6.0 HUMAN INTERFACE DESIGN
6.1 Overview of User Interface
6.2 Screen Images and Mockups

7.0 ALGORITHM DESIGN
7.1 Image Processing Pipeline
7.2 Risk Classification Algorithm

8.0 PERFORMANCE AND OPTIMIZATION

9.0 REFERENCES

1.0 INTRODUCTION

1.1 Purpose

This software design document describes the architecture and system design of the
Skin Cancer Detection Mobile Application, a cross-platform mobile solution for
preliminary skin lesion analysis using convolutional neural networks and on-device
machine learning inference.

1.2 Background and Objectives

Skin cancer is one of the most common cancers worldwide, with early detection
significantly improving treatment outcomes. Current barriers to early detection include
limited access to dermatologists, high consultation costs, and geographical
constraints. This project aims to develop an accessible mobile application that enables
users to perform preliminary skin lesion assessments using their smartphone cameras.

The primary objectives are:

¢ Provide real-time skin lesion analysis with medical-grade accuracy

e Ensure complete user privacy through on-device processing

e Deliverintuitive user experience suitable for non-technical users

¢ Maintain cross-platform compatibility across iOS and Android devices

1.3 Definitions and Acronyms

Acronym Term

CNN Convolutional Neural Network

TFLite TensorFlow Lite

ISIC International Skin Imaging Collaboration
ul/Ux User Interface/User Experience

API Application Programming Interface

Term Definition

Benign Lesion Non-cancerous skin abnormality requiring
monitoring
Malignant Lesion Potentially cancerous skin growth requiring

medical attention

Confidence Score Probability measure indicating prediction certainty

Risk Level Categorized assessment (Low/Medium/High)
based on analysis

2.0 SYSTEM OVERVIEW

The Skin Cancer Detection Mobile Application comprises four major subsystems that
work collaboratively to deliver the complete user experience.

2.1 Image Capture Module

This module handles all aspects of image acquisition, including camera access, real-
time preview, image quality validation, and user guidance. The system provides framing
overlays to help users capture optimal images of skin lesions, with automatic quality
checks to ensure analysis suitability.

2.2 Machine Learning Inference Engine

The core analytical component utilizes a pre-trained CNN model deployed via
TensorFlow Lite. This engine processes captured images through a standardized
pipeline including resizing, normalization, and quality enhancement before performing
classification inference.

2.3 Results Processing and Display

This subsystem interprets raw model outputs into medically meaningful information. It
converts probability scores into risk categories, generates appropriate
recommendations, and formats results for clear user comprehension with necessary
medical disclaimers.

2.4 Data Management System

Responsible for local storage of analysis history, user preferences, and application
data. This system ensures efficient data retrieval for historical tracking while
maintaining strict privacy standards through on-device storage only.

3.0 SYSTEM ARCHITECTURE

3.1 Architectural Design

The system follows a layered architecture pattern with clear separation of concerns:

MOBILE APPLICATION

PRESENTATION LAYER
Main Ul Camera Ul Results Ul |
Component Component component
APPLICATION LOGIC LAYER
Image flow Analysis Result
Controller Orchestrator Processor
MACHINE LEARNING LAYER
TFLite Model Image Prediction
Loader Preprocessor Interpreter

HARDWARE ABSTRACTION LAYER

Processor
(CPU)

Storage

System

Camera
System

3.2 Decomposition Description

Each layer maintains strict interfaces with adjacent layers, ensuring modularity and
testability. The Presentation Layer handles all user interactions, the Application Logic
Layer coordinates workflow, the Machine Learning Layer performs analytical
computations, and the Hardware Abstraction Layer interfaces with device capabilities.

4.0 DATA DESIGN

4.1 Data Description

The system manages three primary data types:

Image Data: Raw camera captures and processed images stored in JPEG/PNG format

with standardized 224x224 pixel dimensions for model compatibility.

Model Data: TensorFlow Lite model files containing pre-trained CNN parameters for

skin lesion classification, optimized for mobile deployment.

Analysis Metadata: Structured records containing timestamps, classification results,

confidence scores, and user annotations stored in local database.

4.2 Data Dictionary

Data Element Format | Size Description

Camera lmage JPEG 2-5MB High-resolution lesion capture
Processed Image | Tensor | 150 KB Normalized 224x224x3 input tensor
TFLite Model tflite 0.42 MB | Optimized CNN model weights
Analysis Record JSON 5-10 KB | Result metadata and user data
User Preferences | JSON 1-2 KB Application configuration settings

5.0 COMPONENT DESIGN

5.1 Presentation Layer Components

Main Ul Component

¢ Responsibility: Application navigation and dashboard management

¢ Key Methods:

o havigateToScreen(screenName): Handles transitions between

application views

o displayDashboard(): Renders main navigation interface with recent
activities
o handleUserPreferences(): Manages application settings and
configurations

Camera Ul Component

¢ Responsibility: Real-time camera interface with user guidance
¢ Key Methods:

initializeCamera(): Configures camera hardware with optimal settings
showFramingOverlay(): Displays lesion centering guidelines
captureHighQualitylmage(): Executes image capture with quality
validation

Results Ul Component

¢ Responsibility: Presentation of analysis outcomes and recommendations
¢ Key Methods:

o displayRiskAssessment(): Shows classification results with visual
indicators

o presentMedicalDisclaimer(): Ensures appropriate usage context
generateRecommendations(): Creates actionable medical guidance

5.2 Application Logic Layer Components
Image Flow Controller

¢ Responsibility: Orchestrates complete analysis workflow from capture to
results
¢ Key Methods:

o orchestrateAnalysisPipeline(): Coordinates sequential processing steps
o validatelnputQuality(): Ensures image suitability for analysis
o handleProcessingErrors(): Manages pipeline failures gracefully

Analysis Orchestrator

¢ Responsibility: Coordinates machine learning pipeline execution
¢ Key Methods:

executeClassificationWorkflow(): Runs end-to-end ML analysis

o monitorPerformanceMetrics(): Tracks processing time and resource
usage

o cachelntermediateResults(): Optimizes repeated operations

Result Processor

¢ Responsibility: Interpretation and formatting of model outputs
¢ Key Methods:

o interpretModelOutput(): Converts probabilities to medical insights
o generateRiskCategorization(): Determines Low/Medium/High risk levels
o formatForDisplay(): Prepares results for user presentation

5.3 Machine Learning Layer Components
TFLite Model Loader
¢ Responsibility: Management of machine learning model lifecycle

¢ Key Methods:

o loadModelWeights(): Initializes TensorFlow Lite interpreter
o verifyModellntegrity(): Ensures model file validity and compatibility
o optimizelnferenceSettings(): Configures for device-specific performance

Image Preprocessor

¢ Responsibility: Preparation of images for model consumption
¢ Key Methods:

o standardizelmageDimensions(): Resizes to 224x224 pixels
o hormalizePixelValues(): Adjusts color ranges and contrast
o enhancelmageQuality(): Improves analysis suitability through filtering

Prediction Interpreter

¢ Responsibility: Conversion of model outputs to medical assessments
¢ Key Methods:

o calculateConfidenceMetrics(): Computes prediction certainty scores
o applyClinicalknowledge(): Incorporates medical domain expertise
o generateExplanatoryContent(): Creates user-friendly result explanations

5.4 Hardware Abstraction Layer Components
Camera System Interface

¢ Responsibility: Abstraction of device camera capabilities
¢ Key Methods:

acquireCameraAccess(): Handles permission management
configureCaptureSettings(): Optimizes for medical imaging
manageHardwareResources(): Coordinates camera with other system
functions

Storage System Manager

¢ Responsibility: Local data persistence and retrieval
¢ Key Methods:

o saveAnalysisHistory(): Stores results with metadata
o retrieveHistoricalData(): Provides access to previous analyses
o manageStorageCapacity(): Handles space allocation and cleanup

Processor Resource Manager

¢ Responsibility: Computational resource allocation and monitoring
¢ Key Methods:

o allocateComputeResources(): Manages CPU/GPU usage for ML tasks
o monitorThermalConditions(): Prevents device overheating
o optimizePowerConsumption(): Balances performance with battery life\

6.0 HUMAN INTERFACE DESIGN

6.1 Overview of User Interface

The user interface follows material design principles with emphasis on accessibility
and simplicity. The design prioritizes clear information hierarchy, consistent navigation
patterns, and responsive layouts adaptable to various screen sizes and orientations.

6.2 Screen Images and Mockups

Main Dashboard Screen

[Header] Skin Cancer Detector [Settings]

Welcome! Monitor skin health with confidence

= Education
Resources

o
€GB Camers
New Analysis

History
View Previous
Results

@ Settings
Preferences

Recent Activity: 2 analyses this week

Camera Interface Screen

[Back] Capture Lesion Image [Flash: *]

LIVE PREVIEW

CAPTURE GUIDELINES
e Centerlesion

e Good lighting

e Steady position

[Gallery] [% CAPTURE] [Help]

Distance: 6-8 inches from skin recommended

Results Display Screen

[Back] Analysis Complete [Save] [Share]

A |MPORTANT: Educational tool only — Not a diagnosis
Always consult healthcare professionals

Result: BENIGN LESION
Confidence: 87% [RN]

Risk Level: LOW

Recommendations:
e Regular self-monitoring
e Annual professional checkup
e Sun protection practices

[Save Result] [Learn More] [New Analysis]

7.0 ALGORITHM DESIGN

7.1 Image Processing Pipeline

BEGIN Image Processing Algorithm
1. CAPTURE raw image from camera hardware
2. VALIDATE image quality metrics:
- Check focus clarity using Laplacian variance
- Assess lighting conditions via histogram analysis
- Verify lesion visibility through region detection
3. IF quality inadequate THEN REQUEST recapture
4. RESIZE image to 224x224 pixels maintaining aspect ratio
5. NORMALIZE pixel values to range [0, 1]
6. APPLY color correction and contrast enhancement
7. RETURN processed image tensor
END Algorithm

7.2 Risk Classification Algorithm

BEGIN Risk Classification Algorithm
INPUT: model_output, confidence_score

IF confidence_score < 0.6 THEN
RETURN "INCONCLUSIVE - Poor image quality”
END IF

IF model_output>0.7 THEN

risk_category = "HIGH"

recommendation = "Consult dermatologist promptly"
ELSE IF model_output > 0.4 THEN

risk_category = "MEDIUM"

recommendation = "Schedule professional evaluation"
ELSE

risk_category ="LOW"

recommendation = "Continue regular monitoring"
END IF

RETURN (risk_category, recommendation)
END Algorithm

8.0 PERFORMANCE AND OPTIMIZATION

8.1 Performance Targets

e Application Startup: <3 seconds cold start time

¢ Image Processing: <2 seconds from capture to analysis ready
¢ ModelInference: <3 seconds for complete classification

¢ Memory Usage: <200MB peak memory consumption

¢ Battery Impact: <5% battery drain per 10 analyses

8.2 Optimization Strategies

Memory Management: Implement streaming image processing to avoid loading full-
resolution images into memory simultaneously. Use efficient data structures and
automatic cache management.

Computational Efficiency: Leverage hardware acceleration through TensorFlow Lite
delegates. Implement batch processing where possible and optimize model
architecture for mobile inference.

Storage Optimization: Use intelligent compression for stored images and implement
configurable retention policies for analysis history.

Power Management: Implement power-aware processing modes that adjust
computational intensity based on battery level and thermal conditions.

9. Reference

"Convolutional Neural Network." Wikipedia, Wikimedia Foundation,
2023, en.wikipedia.org/wiki/Convolutional_neural_network.

"TensorFlow Lite." TensorFlow, Google, 2023, www.tensorflow.org/lite.

"ISIC Archive." International Skin Imaging Collaboration, 2023, www.isic-archive.com.

"ABCDE Rule of Melanoma." American Academy of Dermatology,
2023, www.aad.org/public/diseases/skin-cancer/types/common/melanoma/abcdes.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://www.tensorflow.org/lite
https://www.isic-archive.com/
https://www.aad.org/public/diseases/skin-cancer/types/common/melanoma/abcdes

