
1	

Software	Test	Documentation	
Mobile	App	for	Real-Time	Skin	Cancer	Detection	

Prepared	by:	Nikiraj	Konwar,	Lawson	Darrow,	Nicolas	Rincon-Speranza,	Christian	Stevens	

Faculty	Advisor:	Dr.	Nematzadeh	

 1	 Introduction	

 1.1	 Overview	

This	test	plan	deHines	procedures	for	functional	and	non-functional	requirements	of	the	
Skin	Cancer	Detection	mobile	application.	Testing	ensures	that	all	required	features	and	
behaviors	are	implemented,	and	function	reliably	under	normal	and	abnormal	conditions.	

 1.2	 Purpose	

The	purpose	of	this	plan	is	to	establish	systemic	testing	guidelines	for	each	requirement	
documented	 in	 the	 Software	 Requirements	 SpeciHication.	 Systematic	 testing	 is	
documented	for	each	requirement	to	conHirm	correct	system	behavior,	identify	failures,	
and	validate	compliance	with	user	and	technical	expectations.	

1.3	Approach	

Each	functional	and	non-functional	requirement	will	be	translated	into	test	cases.	Each	
test	case	speciHies	inputs,	expected	outputs,	dependencies,	and	procedures.	Test	inputs	
include	 both	 typical	 and	 atypical	 values.	 Execution	will	 cover	 unit	 testing,	 integration	
testing,	system	testing,	and	acceptance	testing.	

 1.4	 References	

• IEEE	Std	829-2008	(Software	Test	Documentation	Standard).	

• ISIC	Dataset	Documentation.	

• Team	Project	Plan	and	Presentation	documents.	

• Research	publications	on	skin	lesion	classiHication	with	CNNs.	

 1.5	 Contents	

The	remainder	of	this	document	is	structured	as	follows:	

• Section	2:	Test	Case	Scenarios	for	Functional	Requirements	

• Section	3:	Test	Case	Scenarios	for	Non	Functional	Requirements	

• Section	4:	Conclusion	



2	

 2	Test	Case	Scenarios	for	Functional	Requirements	

 2.1	FR1	-	Capture	images	using	smartphone	camera	

Test	Case:	Capture	image	under	valid	conditions.	

• Objective:	Verify	ability	to	capture	lesion	photo	in	real-time.	
• Inputs:	User	taps	camera	icon.	User	takes	photo	of	lesion.	
• Expected	Outcome:	Image	is	stored	in	memory	and	passed	to	preprocessing.	
• Unusual	Input:	Extremely	low	light,	camera	covered,	blurred	motion.	
• Dependencies:	Camera	permission	granted.	
• Procedure:	Open	app,	grant	permission,	capture	image	in	varied	lighting.	

 2.2	FR2	–	Upload	images	from	gallery	

Test	Case:	Select	existing	image.	

• Objective:	Verify	gallery	import	functions.	
• Inputs:	User	selects	lesion	photo	from	gallery.	
• Expected	Outcome:	Imported	image	is	accepted	and	processed.	
• Unusual	Input:	Invalid	format	(BMP),	corrupted	file,	non-lesion	images.	
• Dependencies:	Gallery	access	permission.	
• Procedure:	Upload	valid	PNG,	invalid	BMP,	corrupted	image,	and	selfie.	

 2.3	FR3	–	Provide	framing	overlays	

Test	Case:	Display	overlay	during	live	preview.	

• Objective:	Verify	visual	guide	visibility.	
• Inputs:	User	opens	the	camera	interface.	
• Expected	Outcome:	Circular	guide	shown	consistently.	
• Unusual	Input:	Device	with	unusual	aspect	ratio.	
• Procedure:	Run	app	on	multiple	devices,	check	overlay	alignment.	

 2.4	FR4	–	Preprocess	images	

Test	Case:	Resize	and	normalize.	

• Objective:	Verify	preprocessing	pipeline.	
• Inputs:	User	takes	valid	lesion	photo.	
• Expected	Outcome:	224x224	normalized	tensor	produced.	
• Unusual	Input:	Image	with	extreme	aspect	ratio.	
• Procedure:	Input	images	16:9,	4:3,	portrait,	confirm	standard	output.	

2.5	FR5	–	Classify	lesions	

Test	Case:	Run	classification	model.	

• Objective:	Confirm	inference	runs	correctly.	



3	

• Inputs:	Preprocessed	tensor.	
• Expected	Outcome:	Benign/malignant	probability	returned.	
• Unusual	Input:	Random	noise	image.	
• Procedure:	Input	valid	lesion	and	blank/noise	image,	observe	result.	

 2.6	FR6	-	Display	conMidence	percentage	

Test	Case:	Show	confidence	score.	

• Objective:	Ensure	transparency.	
• Inputs:	Model	output	probabilities;	risk	assessment.	
• Expected	Outcome:	Confidence	displayed	as	percentage.	
• Procedure:	Run	classification,	verify	UI	shows	number.	

2.7	FR7	–	Present	disclaimers	

Test	Case:	Disclaimer	always	shown.	

• Objective:	Confirm	legal	compliance.	
• Inputs:	Display	result	screen.	
• Expected	Outcome:	Disclaimer	present	for	all	outputs.	
• Procedure:	Run	multiple	analyses,	verify	disclaimer	presence.	

2.8	FR8	–	Provide	links	to	medical	resources	

Test	Case:	Resource	links	accessible.	

• Objective:	Verify	resource	availability.	
• Inputs:	View	result	screen.	
• Expected	Outcome:	Clickable	links	to	healthcare	resources.	User	taps	link.	
• Dependencies:	Internet	required.	
• Procedure:	Test	link	opening	on	both	iOS	and	Android.	

29.	FR9	–	Operate	ofMline	

Test	Case:	Run	app	with	no	connectivity.	

• Objective:	Validate	local	inference.	
• Inputs:	Airplane	mode	enabled.	User	capture/upload	photo.	
• Expected	Outcome:	Analysis	completes	without	connectivity.	

2.10	FR10	–	Store	no	images	externally	

Test	Case:	Confirm	storage	restrictions.	

• Objective:	Validate	privacy.	
• Inputs:	User	capture/upload	lesion.	
• Expected	Outcome:	Images	only	stored	locally,	no	cloud	sync.	
• Procedure:	Inspect	storage,	confirm	no	external	transfer.	



4	

2.11	FR11	–	Allow	image	retakes	

Test	Case:	Retake	option	visible.	

• Objective:	Verify	retry	support.	
• Inputs:	User	capture/upload	blurry	image.	
• Expected	Outcome:	User	prompted	to	retake.	

2.12	FR12	–	Provide	educational	tips	

Test	Case:	Display	tips	section.	

• Objective:	Confirm	awareness	material	present.	
• Inputs:	Access	educational	section.	
• Expected	Outcome:	Text/images	on	lesion	warning	signs	shown.	

2.13	FR13	–	Log	anonymized	usage	data	

Test	Case:	Log	generation	without	sensitive	data.	

• Objective:	Confirm	analytics	privacy.	
• Inputs:	Perform	multiple	analyses.	
• Expected	Outcome:	Logs	contain	timestamps	and	app	usage,	no	personal	health	

data.	

2.14	FR14	–	Display	states	(loading,	analyzing,	result)	

Test	Case:	UI	state	transitions.	

• Objective:	Verify	UX	flow.	
• Inputs:	Run	analysis.	
• Expected	Outcome:	Loading	→	Analyzing	→	Result	displayed.	

2.15	FR15	–	Deploy	on	Android	and	iOS	

Test	Case:	Install	and	run	on	both	platforms.	

• Objective:	Verify	cross-platform	support.	
• Inputs:	Use	iPhone	and	Android	phone.	
• Expected	Outcome:	Full	functionality	on	both.	

	

	

	



5	

 3	Test	Case	Scenarios	for	Non-Functional	Requirements	

3.1	NFR1	–	Predictions	within	5	seconds	

Test	Case:	Time	analysis.	

• Inputs:	Capture	lesion.	
• Expected	Outcome:	Classification	<	5	seconds.	

3.2	NFR2	–	Processing	local	only	

Test	Case:	Monitor	network	activity.	

• Expected	Outcome:	No	inference	data	leaves	device.	

3.3	NFR3	–	Handle	corrupted/irrelevant	images	

Test	Case:	Input	corrupted	file	or	selfie.	

• Expected	Outcome:	Error	prompt	or	feedback	without	crash.	

3.4	NFR4	–	Intuitive	interface	

Test	Case:	First-time	user	task	completion.	

• Expected	Outcome:	Successful	navigation	without	tutorial.	

3.5	NFR5	–	Android/iOS	compatibility	

Test	Case:	Functional	equivalence	test.	

• Expected	Outcome:	Identical	behavior	across	devices.	

3.6	NFR6	–	No	exposure	of	sensitive	data	

Test	Case:	Inspect	logs.	

• Expected	Outcome:	No	health-related	identifiers.	

3.7	NFR7	–	Accessibility	support	

Test	Case:	Enable	large	fonts/high	contrast.	

• Expected	Outcome:	UI	elements	scale	and	contrast	correctly.	

3.8	NFR8	–	Modular	architecture	

Test	Case:	Swap	ML	model.	



6	

• Expected	Outcome:	Minimal	code	changes	required.	

3.9	NFR9	–	Future	dataset/model	support	

Test	Case:	Load	updated	TFLite	model.	

• Expected	Outcome:	New	model	integrated	successfully.	

3.10	NFR10	–	Healthcare	ethics	standards	

Test	Case:	Audit	app	compliance.	

• Expected	Outcome:	Disclaimer,	privacy,	ethical	design	verified.	

	

 4		 Conclusion	

This	test	plan	details	all	functional	and	non-functional	requirements,	ensures	veriHication	
through	normal	and	unusual	input	cases,	and	validates	compliance	with	privacy,	usability,	
and	performance	constraints.	

Functional	 requirements	 deHine	 the	 “what,”	 objectives	 of	 speciHic	 features.	 The	 section	
deHines	 various	 normal	 and	 unusual	 inputs	 and	 expected	 outputs.	 Inputs	 are	 user-
triggered	behaviors,	and	follow	procedural	step-by-step	actions.	

Non	 functional	 requirements	 describe	 qualities	 of	 the	 system.	 The	 section	 deHines	
constraints	like	speed,	security,	and	portability,	 focusing	on	how	these	qualities	should	
behave.	The	conditions,	time,	memory	usage,	system	logs,	are	measured	by	the	system.	


